The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species
نویسندگان
چکیده
The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS) likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd) is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS. IMPORTANCE Whether in sediments or pathogenic biofilms, the structures of microbial communities are configured around the sensitivities of their members to oxygen. Oxygen triggers the intracellular formation of reactive oxygen species (ROS), and the sensitivity of a microbe to oxygen likely depends upon the rates at which ROS are formed inside it. This study supports that idea, as an obligate anaerobe was confirmed to generate ROS very rapidly upon aeration. However, the suspected source of the ROS was disproven, as the fumarate reductase of the anaerobe did not display the high oxidation rate of its E. coli homologue. Evidently, adjustments in its electronic structure can suppress the tendency of an enzyme to generate ROS. Importantly, this outcome suggests that evolutionary pressure may succeed in modifying redox enzymes and thereby diminishing the stress that an organism experiences in oxic environments. The actual source of ROS in the anaerobe remains to be discovered.
منابع مشابه
Determination of reactive oxygen generated from natural medicines and their antibacterial activity☆
Extracts of 16 natural medicine powders (Galla chinensis, Malloti cortex, Cassiae semen, Sophorae radix, Myricae cortex, Crataegi fructus, Gambir, Mume fructus, Geranii herba, Phellodendri cortex, Coptidis rhizoma, Swertiae herba, and Cinnamomi cortex) were assayed for reactive oxygen concentrations using the peroxyoxalate chemiluminescent detection system. High luminescence intensity was obser...
متن کاملGenetic Transformation of Amylase Gene to Ruminal Bacteroides Species Using Conjugation Consequence for Improvement of Rumen Enzyme
Rumen bacterial strains can potentially be manipulated to perform functions different from wild type species. The most numerous species of bacteria in the rumen and gut are species of the familyBacteroidetes, whichcan have the potential for genetic modification for enzyme production. One of the genetic manipulation of rumen bacteria can perform for production of starch digestive enzyme for the ...
متن کاملVitamin B12 Uptake by the Gut Commensal Bacteria Bacteroides thetaiotaomicron Limits the Production of Shiga Toxin by Enterohemorrhagic Escherichia coli.
Enterohemorrhagic Escherichia coli (EHEC) are foodborne pathogens responsible for the development of bloody diarrhea and renal failure in humans. Many environmental factors have been shown to regulate the production of Shiga toxin 2 (Stx2), the main virulence factor of EHEC. Among them, soluble factors produced by human gut microbiota and in particular, by the predominant species Bacteroides th...
متن کاملComparison of Bacteroides thetaiotaomicron and Escherichia coli 16S rRNA gene expression signals.
There are barriers to cross-expression of genes between Bacteroides spp. and Escherichia coli. In this study, a lux-based reporter system was developed for Bacteroides and used to compare the promoter structure and function of a Bacteroides thetaiotaomicron 4001 (BT4001) 16S rRNA promoter with those of E. coli in vivo. Analysis of the BT4001 sequences upstream of the 16S rRNA gene revealed the ...
متن کاملSuperoxide dismutase in Bacteroides fragilis and related Bacteroides species.
Superoxide dismutase (SOD) activity was demonstrated in cell-free extracts of Bacteroides fragilis, Bacteroides vulgatus, Bacteroides distasonis, Bacteroides ovatus, and Bacteroides thetaiotaomicron. The strains were grown under anaerobic conditions in Trypticase soy broth, and the specific activity of SOD in the extracts was, in most strains, higher than in cell-free extracts of Escherichia co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017